以下是几个在理解和把握作为核心素养的数学思维时,需要特别注意的具体事项。

1.“三会“中的数学思维相对侧重推理

作为核心素养的“三会”是一个整体,三者互为支撑。一方面,数学眼光的观察和数学语言的表达都离不开数学思维;另一方面,数学思维也肯定要在“眼光”和“语言”拓展出的空间中开展。因此,“三会”中的数学思维与我们一般了解的广义的数学思维不完全一样。广义数学思维活动中的观察、概括、正确阐述等内容,实际上已经分别对应于“三会”中的数学眼光和数学语言了。也就是说,在“三会”的框架下,数学眼光、数学思维和数学语言都既有各自的単独表述,又在同一个目标体系中以相互支撑的方式共为一体。所以,比起一般意义上几乎包罗万象的数学思维,在共为一体的“三会”结构中,数学思维事实上相对侧重推理。

推理是数学思维活动中最能反映数学独特思维价值的部分。所以,一般意义上思维活动涉及的归纳、比较、猜想、分析、综合等,在作为“三会”的数学思维中,都应在推理的框架之下,以有条理并言之有据的方式开展,都要有规律可循。

2.推理的形式

推理的形式是相当丰富的,但无论有多少种形式,都有统一规律可循。所有推理的基本形式都是:如果P,那么Q,或者写成P→Q。其中P和Q是命题, 也可以称P是前提,Q是结论。数学推理的P和Q就是与数学有关的命题。

3.推理的类型

推理的方法决定了推理的类型。如果推理采用的是归纳法,就称为归纳推理;如果用的是演绎法,就称为演绎推理;如果借助的是图形直观,就称为直观推理或空间推理;如果运用的是数据,就称为统计推理(或统计推断);等等。只要满足第2点的要求并言之有据、步步有据,推理在类型上是比较开放的。

4.必然性推理

虽然推理形式比较开放,但必须清楚的是,推理形式本身的合理性并不能保证推理结果的必然性。对于任何一个推理形式P→Q,如果对讨论问题范围(论域)内任何一个元素都有“如果P成立,那么Q就一定成立”,或者说“如果P是真的,那么Q就一定为真”,这样推理得到的结论是可靠的。因此,像归纳、 类比等推理形式就不能保证结果一定是可靠的。

5.演绎推理是必然性推理

用演绎法做出的推理被称为演绎推理。演绎法就是通常所说的“三段论”,也就是先要证明A是成立的,接下来再证明A→B是成立的,那么结论B就成立。在教学中,这种方法会被称为从一般到特殊。“三段论“有许多等价形式,在教学中我们也会用不同称谓来区分,如分析法、综合法,这里就不一一列举了。

演绎推理的言之有理是遵循规则的结果。考虑到义务教育阶段学生的年龄特征,一般是用朴实且不突兀的方式引入推理规则。例如,把学生已有的知识积累和生活经验作为依据,像矛盾律和排中律等也是作为应有之意,不去刻意强调。即使是2022版课标中给出的“基本事实”,也大多数是已知的性质或可以被证明的结果。这样的推理规则,本身就是促进学生大脑健全发育的丰富营养。

数学推理形式多种多样,在所有推理形式当中,只有演绎推理是必然性推 理,即只有演绎推理的结果一定是正确的。其他推理的结果可能成立,也可能不 成立,即推理结果是或然的,或者说是未必可靠的。所以,如果一定要确认一个 结论普遍成立,就只能用演绎推理。为了有所区分,从2001年颁布的课标开始, 把演绎推理之外的推理形式统称为合情推理,所以数学推理事实上相当于演绎推 理+合情推理,这也是2022版课标中“推理“ 一词的含义。

6.演绎推理与合情推理的比较

可从两个方面比较,这种比较对于理解数学思维很重要。

一方面,演绎推理虽然可靠,但只是一个根据已知命题确认一个新命题成立的推理。虽然在推理过程中也可能产生提出新概念、开发新方法的需求,存在进一步发现问题和提出问题的可能,但仅就推理的结果而言,因为都是已知的,所以只是确认了一个事先备好的命题的真伪,与发现新命题没有关系。而几乎所有的合情推理都是为发现一个新事物或提出一个新命题而发起的,虽然它们推出的结论是或然的,不一定为真,甚至可能推不出什么结果,但数学和科学领域的开疆拓土往往与合情推理提出的猜想或假设有关。在数学课程领域,合情推理已经被视为引导学生进行数学“再发现”的一个基本途径了。

另一方面,合情推理遍布于基础教育的许多学科,不为数学课程所独有,也就是说没有数学课程,学生也多少会受到合情推理的熏陶,只不过机会没有这么多,熏陶程度也没有这么强烈。演绎推理在基础教育其他学科中只是零星地出现,故可以认为系统的演绎推理在义务教育阶段仅存于数学课程中。加之演绎推理在培育思维严谨性方面具有显著作用,所以使得数学思维表现出不可替代的教育价值。

把这两个方面的比较放在一起,可以明显看出:如果想给学生的数学思维插上发现的翅膀,合情推理必不可少;如果想让学生的数学思维严谨扎实,演绎推理不可或缺。如果想两者兼得,就一定要赋予演绎推理和合情推理同等重要的思维教育使命。因此,那些关于演绎推理和合情推理哪种重要哪种次之的讨论意义都不大,如何在教材和教学当中平衡严谨扎实与开放灵活之间的关系,使之相互协调、成为一体,才是最为重要的。

在教学实践中,这个关系有时会表现为一对矛盾,可能不太好协调。如果遇到这种情况,应该怎么办?其实核心素养已经给出了一个协调的标准:在义务教育阶段,数学思维是“会用数学的思维思考现实世界”的简称,所以无论是演绎推理还是合情推理,无论是严谨求实还是开放灵活,能否相互协调、熔于一炉, 归根结底,要由“思考现实世界”的需要决定。如果现实需要探索发现,就一定要开放灵活;如果现实需要求真务实,就一定要严谨扎实。基于“思考现实世界”的需要,基本可以避免严谨扎实与开放灵活之间可能产生的矛盾。毕竟,现实世界是我们思考数学思维问题的基础。

更重要的是,思维是属于大脑的功能,大脑的发育有年龄特征和大脑本身的分区特征。通常所说的“多大的孩子做多大的事”或课程要“符合学生的生长发育规律”等,都与大脑发育的节奏有关。上面强调的“相互协调、熔于一炉”是仅就教师对数学思维的整体认知与把握而言,“同等重要”也仅针对思维教育的使命而言,与课程中合情推理与演绎推理之间各自所占的比重没有任何关系,这一点务必不要搞混。事实上,西方发达国家在我们的义务教育年龄段几乎没有几何的演绎证明,而是尽力拓展合情推理的教学空间。这样的做法是自20世纪 70年代之后,在脑科学的一些新发现(如大脑的左右半球理论)的引领下,逐步调整的结果,到今天已经是约定俗成。这方面的经验值得借鉴,至少教师应该意 识到,当学生在演绎证明过程中遇到挑战时,可能并不是因为他们不努力,而是因为这个内容可能在高中学才更合适。

7.统计推理与其他推理的关系

虽然统计推理的说法在教学或研究领域已经被广泛使用,但统计推理与前面提到的演绎推理或合情推理其实是不一样的推理。这个不一样差不多是完全不一样,主要表现在三个方面。

一是对象不一样。数学的推理,一般是对命题之间的逻辑关系而言,对象是命题;而统计的推理是就数据的获取与分析而言,对象是数据。

二是目标不一样。数学推理的目标是确认或提出一个事实;而统计推理的目标是对一个未知事件发生的可能性做出预测。

三是推理的结果不一样。数学推理的结果是一个命题的成立与否,是一个纯客观的结果;统计推理的结果是关于一个事件发生可能性大小的估计,是一个相对主观的结果。在专业的统计科学领域里把推理称为推断,这个“断”字,在汉语中反映的就是人的主观性。